WJPPS Citation

Login

Search

News & Updation

  • Updated Version
  • WJPPS introducing updated version of OSTS (online submission and tracking system), which have dedicated control panel for both author and reviewer. Using this control panel author can submit manuscript
  • Call for Paper
    • WJPPS  Invited to submit your valuable manuscripts for Coming Issue.
  • Journal web site support Internet Explorer, Google Chrome, Mozilla Firefox, Opera, Saffari for easy download of article without any trouble.
  •  
  • New Impact Factor
  • WJPPS Impact Factor has been Increased to 8.025 for Year 2024.

  • ICV
  • WJPPS Rank with Index Copernicus Value 84.65 due to high reputation at International Level

  • Scope Indexed
  • WJPPS is indexed in Scope Database based on the recommendation of the Content Selection Committee (CSC).

  • WJPPS: NOVEMBER ISSUE PUBLISHED
  • NOVEMBER 2024 Issue has been successfully launched on NOVEMBER 2024.

Abstract

STUDY OF NATEGLINIDE FOR FORMULATION AND EVALUATION OF BIODEGRADABLE MICROSPHERES

J. M. Ghormade*, R. L. Bakal, H. S. Sawarkar, S. N. Ande, P. V. Ajmire

ABSTRACT

Gastro retentive floating drug delivery systems have a bulk density lower than that of gastric fluids and thus increase residence time of drug in stomach and provide controlled delivery of many drugs. Gastro retentive dosage forms have potential for use as controlled- release drug delivery systems. The aim of the present study is formulation and characterization of floating microspheres using nateglinide as a model drug for the management of type-2 diabetes mellitus. Floating microspheres were prepared by oil-in-water emulsion solvent evaporation technique using ethyl cellulose and eudragit S-100 as release retarding polymers. The floating microspheres were evaluated for percentage yield (%), particle size, drug content, drug entrapment efficiency, in-vitro floating ability and in-vitro drug release studies. The surface morphology of prepared microspheres was characterized by scanning electron microscopy. The microspheres were found to be spherical in shape and porous in nature. Compatibility studies were performed by fourier transform infrared (FTIR) technique. The prepared microspheres showed prolonged drug release of 12 h and remain buoyant for more than 12 h. In-vitro release kinetics were studied in different release kinetics models like zero order, first order, higuchi and korsmeyer peppas model and the best fit model was found to be higuchi plot with release exponent n value less than 0.89. It was concluded that developed floating microspheres of nateglinide offers a suitable and practical approach for prolonged release of drug over an extended period of time and thus oral bioavailability, efficacy and patient compliance is improved.

Keywords: Antidiabetic, Ethyl cellulose, Eudragit S-100, Gastro retentive drug delivery, Floating drug delivery system, Emulsion solvent evaporation method.


[Download Article]     [Download Certifiate]

Call for Paper

World Journal of Pharmacy and Pharmaceutical Sciences (WJPPS)
Read More

Online Submission

World Journal of Pharmacy and Pharmaceutical Sciences (WJPPS)
Read More

Email & SMS Alert

World Journal of Pharmacy and Pharmaceutical Sciences (WJPPS)
Read More