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ABSTRACT 

Some coumarin derivatives were synthesized starting from 4-

hydroxycoumarin and benzoyl chlorides. The structures of the obtained 

compounds were confirmed by mass and NMR spectra. Additionally, 

their crystal structures were determined by X-ray diffractometry, 

excepting the compound C1. Absorption and fluorescence spectra of 

these derivatives have been investigated in acetonitrile medium. The 

effects of various electron donating substituents R on fluorescence 

emission were examined. As a result, compound C5 with an electron-

donating substituent dimethyl amino (R = Me2N) exhibited the 

strongest fluorescence. 

 

KEYWORDS: 4-hydroxycoumarin, O-acylation, (coumarin-4-yl)-

benzoates, fluorescence, substituent R. 

INTRODUCTION 

Coumarins or benzo-2-pyrone derivatives are one of the most significant families of natural 

product compounds and are also important in synthetic organic chemistry. They have been 

widely used as starting materials or precursor molecules in the pharmaceutical, perfumery 

and agrochemical industries. Coumarin derivatives are also used as fluorescent brighteners, 

efficient laser dyes and additives in food and cosmetics.
[1]

 Specifically, 4-hydroxycoumarin 
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derivatives represent a large class of compounds that have been reported to possess a wide 

range of biological activities.
[2–4]

 They can be among others, antibacterial
[5,6]

, anti-HIV active 

and anti-tumoral.
[7-10]

 Many 4-hydroxycoumarin derivatives show significant anticoagulant 

action by antagonizing the action of vitamin K.
[11,12]

 

 

Recently, coumarins have attracted considerable attention for electronic and photonic 

applications due to their inherent photochemical characteristics
[13,14]

, reasonable stability and 

solubility in various organic solvents. Many coumarin derivatives have been commercialized 

as blue-green lasers for fluorescent labels and fluorescent probes.
[15–18]

 They exhibit intense 

fluorescence upon substitution with various functional groups at different positions.
[19–20]

 

 

Herein, we report a facile synthesis and structural analysis of five 4-substituted coumarin 

derivatives, presenting at that position an ester function (compounds C). The fluorescence 

properties of this series of (coumarin-4-yl)-benzoates were then investigated.  

 

Thus, the title compounds were synthesized according to a described convenient method, in 

satisfactory yields, from 4-hydroxycoumarin and benzoyl chlorides in the presence of 

triethylamine (TEA).
[21-24]

 Their molecular structures were characterized by FT-IR, 
1
H and 

13
C NMR

 
and ESI-MS spectrometries and were finally determined by X-ray diffractometry, 

with the exception of compound C1 which is in the shape of powder. The fluorescence 

spectra were recorded in acetonitrile. We evidenced the effects of different substitutions on 

fluorescence emission. 

 

MATERIALS AND METHODS 

Synthesis and Characterization of compounds C 

Synthesis  

Compound C were prepared in high yields (74%–89%), by an esterification reaction of 4-

hydroxycoumarin with various benzoyl chlorides. The hydroxyl at position 4 of A was 

acylated to benzoyl, methyl-benzoyl, t-butyl-benzoyl, methoxy-benzoyl and 

dimethlaminobenzoyl. We used exploited HSAB theory of Pearson in the choice of the 

base.
[25,26]

 According to this principle, acylation with benzoyl chlorides, which were known 

to be hard acids, leads to best yields by using a hard base like TEA. Further, the preferable 

solvents were ethers: diethyl ether or tetrahydrofuran (THF), but it was necessary to raise the 

temperature of reaction to solvent reflux. On the whole, the global process of this O-acylation 

is given below (Scheme 1). 
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A B C 

R = H: Solvent = Diethyl ether; 

Other cases: Solvent = THF. 

C1: R = H; C2: R = CH3; C3: R = t-Bu; C4: R = MeO; C5: R = Me2N. 

Scheme 1: Synthetic route of (Coumarin-4-yl)benzoates. 

 

Synthesis and crystallization (compound C1) 

To a solution of benzoyl chloride (6.17 mmol) in dried diethyl ether (25 mL) was added dried 

TEA (3.2 mL; 3.6 molar equivalents) and 4-hydroxycoumarin (1 g; 6.17 mmol) by small 

portions over 30 min., under strong stirring. The reaction mixture was left under agitation for 

2 h at room temperature and then refluxed for 2 h. The obtained solution was poured in a 

separating funnel containing 40 ml of chloroform and washed with diluted hydrochloric acid 

solution until the pH was 2-3. The organic phase was extracted, washed with water to 

neutrality, dried using MgSO4 and the solvent removed. The crude product was filtered off 

with suction, washed with petroleum ether and recrystallized from a solvent mixture of 

chloroform–hexane (1/3, V/V) to offer white powder of the compound C1. 

 

Synthesis and crystallization (compounds C2, C3, C4, C5) 

To a solution of the corresponding 4-substitutedbenzoyl chloride (6.17 mmol) in dried THF 

(40 mL) was added dried TEA (2.6 mL ; 3 molar equivalents) and 4-hydroxycoumarin (1g; 

6.17 mmol) by small portions over 30 min, under high speed stirring. The mixture was then 

refluxed for 4 h and poured into 40 mL of chloroform. The resulting solution was acidified 

with diluted hydrochloric acid until the pH was 2–3. The organic layer was extracted, washed 

with water to neutrality, dried over MgSO4. The resulting precipitate was filtered off with 

suction, washed with petroleum ether and recrystallized from chloroform to afford desired 

crystals C2–C5. To sum up, the results of synthesis are given in the following table (table 1). 
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Table 1: Preparation of (coumarin-4-yl)benzoates. 

Compound R Yield % MP °C Aspect 

C1 H 89 183-184 White powder 

C2 CH3 76 120 Colourless crystals 

C3 
C4 

t-Bu 
MeO 

74 
84 

108-110 
148-149 

Colourless crystals 
Colourless crystals 

C5 Me2N 83 172 Colourless crystals 

  

Material and measurements 

Melting points were determined in capillary tubes on a Stuart SMP 11 apparatus and are 

uncorrected.
 1

H and 
13

C (+ DEPT 135) NMR spectra were recorded on a BRUKER AMX-

400 spectrometer at 400 MHz and 100 MHz respectively, using TMS as internal standard 

(chemical shifts  in ppm, J in Hz).  

 

Mass spectra were obtained on a 3200 QTRAP (Applied Biosystems SCIEX) spectrometer 

equipped with a pneumatically assisted air pressure ionization (API) source. 

 

All the compounds were analyzed by X-ray diffractometry. In this part, we highlight the 

crystallographic data that justify their 3D structures. Data were collected by the X scan 

technique at 298 K on a Nonius Kappa CCD diffractometer, using radiation MoKα (λ = 

0.71073 Å), and were corrected for Lorentz and polarization effects. The structures were 

solved by direct methods which revealed the positions of all non-hydrogen atoms, and were 

refined on F
2
 by a full-matrix least-squares procedure using anisotropic displacement 

parameters. The program used to solve structure was SIR92 for compound C5
[27] 

and 

SIR2004 for the others.
[28]

 The program used to refine the structures was CRYSTALS for 

compound C5
[29]

 and SHELXL97 for C2-C4.
[30]

 All hydrogen atoms were located from 

difference Fourier maps and were refined isotropically. Molecular graphics were generated 

with Platon.
[31]

 Finally, the software used to prepare material for publications was 

CRYSTALS for compound C5 and SHELXL97, publCIF and WinGX for C2-C4.
[32,33]

 

 

A summary of the crystals data, experimental details, and refinements results is given below 

in the crystal structure Determination. It’s the occasion for us to signalize that the crystal 

structures of compounds C2, C3, C4 and C5 have previously been published by our research 

team.
[21-24]
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Characterization 
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Scheme 2: Numbered structure of compounds C. 

 

(Coumarin-4-yl)benzoate (C1) 

C1: ESI-MS: [M+H]
+
, m/z 267; 

1
H NMR (Bruker TOPSPIN, Acétone-d6, 300 MHz, ppm) 

δ: 8.3 (d, 2H, H13 et H17); 7.9 (t, 1H, H15); 7.75 (dd , 2H, H14 and H16); 7.64 (d,1H, H5); 

7.45 (dd, 1H, H7); 7.33 (m, 2H, H6 and H8); 5.7 (s, 1H, H3). 
13

C NMR (Bruker TOPSPIN, 

Acétone-d6, 100 MHz, p.p.m.) δ: 165.95 (C-4); 161.30 (C-2); 155.02 (C-11); 154.61 (C-9); 

135.61 (C-15); 131.26 (C-13 and C-17); 130.01 (C-14 and C-16); 129.10 (C-12); 125.41 (C-

7); 124.58 (C-5); 124.09 (C-6); 117.64 (C-8); 116.76 (C-10); 92.58 (C-3). DEPT 135°: 

135.61 (C-15); 131.26 (C-13 et C-17); 130.01 (C-14 and C-16); 125.41 (C-7); 124.58 (C-5); 

124.09 (C-6); 117.64 (C-8); 92.58 (C-3). 

 

(Coumarin-4-yl)-4-mehylbenzoate (C2) 

C2: ESI-MS: [M+H]
+
, m/z 281; 

1
H NMR (Bruker TOPSPIN, Acétone-d6, 400 MHz, ppm) 

δ: 8.2 (d, 2H, H-13 and H-17); 7.9 (d,1H, H-5); 7.75 (t, 1H, H-7); 7.5 (m, 2H, H-6 et H-8); 

7.4 (m, 2H, H-14 and H-16); 6.69 (s, 1H, H-3); 2.5 (s, 3H, CH3). 
13

C NMR (Bruker 

TOPSPIN, Acétone-d6, 100 MHz, p.p.m.) δ: 163.55 (C-4); 161.28 (C-2); 159.84 (C-11); 

154.67 (C-9); 146.80 (C-15); 133.88 (C-13 and C-17); 131.34 (C-14 and C-16); 130.65 (C-7); 

126.32 (C-12); 125.39 (C-5); 124.05 (C-6); 117.64 (C-8); 116.68 (C-10); 106.44 (C-3); 21.74 

(CH3). DEPT 135°: 133.88 (C-13 et C-17); 131.34 (C-14 and C-16); 130.65 (C-7); 125.39 

(C-5); 124.05 (C-6); 117.64 (C-8); 106.44 (C-3); 21.74 (CH3). 

 

Crystal structure Determination (C2) 

Chemical formula: C17H12O4; Formula weight: 280.27; Crystal description: prism, colourless; 

Melting point (K): 393 ; Crystal system: Triclinic; space group: P -1; Temperature (K): 298; 

Wavelength (Å): 0.71073; Unit cell dimensions: a = 9.2790 (5) Å, b = 10.7696 (5) Å, c = 

14.5758 (9) Å, α = 95.274 (2)°, β = 97.875 (2)°, β = 97.875 (2)°; Volume (Å
3
): 1382.75 (13); 
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Z = 4; Radiation type: MoKα; Absorption coefficient (mm
-1

): 0.10; Density (Mg m
−3

): 1.346; 

F(000): 584; Crystal size (mm): 0.35 × 0.20 × 0.20 mm; 16045 measured reflections; 6907 

independent reflections; Rint = 0.055; R[F
2
 > 2σ(F

2
)] = 0.071; wR (F

2
) = 0.193; S = 1.02; 

3981 reflections; 381 parameters. 

 

 

Figure 1: Molecular structure of compound C2 showing the atomic labeling scheme 

with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as 

spheres of arbitrary radius. 

 

(Coumarin-4-yl)-4-tertiobutylbenzoate (C3) 

C3: ESI-MS: [M+H]
+
, m/z 323; 

1
H NMR (Bruker TOPSPIN, Acétone-d6, 400 MHz, ppm) 

δ: 8.23 (d, 2H, H-13 and H-17); 7.9 (d,1H, H-5); 7.74 (m, 3H, H-6, H-7 et H-8); 7.45 (m, 2H, 

H-14 and H-16); 6.68 (s, 1H, H-3); 1.4 (s, 9H, 3CH3).  

 
13

C NMR (Bruker TOPSPIN, Acétone-d6, 100 MHz, ppm) δ: 163.48 (C-4); 161.27 (C-2); 

159.88 (C-15); 159.48 (C-11); 154.67 (C-9); 133.89 (C-13 and C-17); 131.25 (C-7); 127.00 

(C-5); 126.32 (C-12); 125.39 (C-6); 124.08 (C-14 and C-16); 117.64 (C-8); 116.69 (C-10); 

106.47 (C-3); 35.93 (C-18); 21.74 (CH3). DEPT 135°: 133.89 (C-13 and C-17); 131.25 (C-

7); 127.00 (C-5); 125.39 (C-6); 124.08 (C-14 and C-16); 117.64 (C-8); 106.47 (C-3); 21.74 

(CH3).  

 

Crystal structure Determination (C3) 

Chemical formula: C20H18O4; Formula weight: 322.34; Crystal description: Parallelepiped, 

colourless; Melting point (K): 381–383 K; Crystal system: Triclinic; space group: P-1; 

Temperature (K): 298; Wavelength (Å): λ = 0.71073; Unit cell dimensions: a = 6.4319 (2) Å, 

b = 9.3498 (3) Å, c = 14.5505 (5) Å, α = 98.481 (1)°, β = 93.655 (1)°, γ = 102.359 (2)°; 

Volume (Å
3
): 841.27 (5); Z = 2; Radiation type: MoKα; Absorption coefficient (mm

-1
): 0.09; 

Density (Mg m
−3

): 1.273; F(000): 340; Crystal size (mm): 0.50 × 0.30 × 0.14; 11164 
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measured reflections; 4198 independent reflections; Rint = 0.031; R[F
2
 > 2σ(F

2
)] = 0.057; 

wR(F
2
) = 0.157; S = 1.05; 4198 reflections; 247 parameters. 

 

 

Figure 2: Molecular structure of compound C3, showing displacement ellipsoids at the 

50% probability level. H atoms are shown as spheres of arbitrary radius. 

 

(Coumarin-4-yl)-4-methoxybenzoate (C4). 

C4: ESI-MS: [M+H]
+
, m/z 297; 

1
H NMR (Bruker TOPSPIN, CDCl3, 400 MHz, ppm) δ : 8.2 

(d, 2H, H-13 and H-17); 7.73 (d, 1H, H-8); 7.61 (t.d,1H, H-7); 7.43 (d, 1H, H-5); 7.33 (t.d, 

1H, H-6); 7.05 (d, 2H, H-14 and H-16); 6.63 (s, 1H, H-3); 3.93 (s, 3H, CH3). 
13

C NMR 

(Bruker TOPSPIN, CDCl3, 100 MHz, p.p.m.) δ: 164.85 (C-11); 162.23 (C-2); 161.54 (C-4); 

158.95 (C-12); 153.73 (C-9); 132.77 (C-13 and C-17); 127 (C-5); 126 (C-8); 124.32 (C-6); 

120.04 (C-15); 117.15 (C-7); 115.93 (C-10); 113 (C-14 and C-16); 108 (C-3); 55.68 (CH3). 

DEPT 135°: 132.77 (C-13 et C-17); 127 (C-5); 126 (C-8); 124.32 (C-6); 117.15 (C-7); 113 

(C-14 and C-16); 108 (C-3); 55.68 (CH3).  

 

Crystal structure Determination (C4) 

Chemical formula: C17H12O5; Formula weight: 296.27; Crystal description: Prism, colourless; 

Melting point (K): 421–422 K; Crystal system: Triclinic; space group: P-1; Temperature (K): 

298; Wavelength (Å): λ = 0.71073; Unit cell dimensions: a = 4.371 (1) Å b = 10.535 (4) Å, c 

= 15.193 (2) Å, α = 85.218 (3)°, β = 83.688 (2)°, γ = 81.893 (1)°; Volume (Å
3
): 686.8 (3); Z 

= 2; Radiation type: MoKα; Absorption coefficient (mm
-1

) : 0.11; Density (Mg m
−3

): 1.433; 

F(000): 308; Crystal size (mm): 0.25 × 0.15 × 0.04; 5683 measured reflections; 2731 

independent reflections; Rint = 0.055; R[F
2
 > 2σ(F

2
)] = 0.066; wR(F

2
) = 0.163; S = 1.11; 

2731 reflections; 200 parameters.  
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Figure 3: Molecular structure of compound C4, showing displacement ellipsoids at the 

50% probability level. H atoms areshown as spheres of arbitrary radius. 

 

(Coumarin-4-yl)-4-dimethylaminobenzoate (C5) 

C5: ESI-MS: [M+H]
+
, m/z 310;

 1
H NMR (Bruker TOPSPIN Acétone-d6, 400 MHz, ppm) δ: 

8.10 (d, 2H, H-13 and H-17); 7.86 (d, 1H, H-8); 7.73 (t.d,1H, H-7); 7.45 (t.d, 1H, H-6); 7.42 

(d, 1H, H-5); 6.89 (d, 2H, H-14 and H-16); 6.6 (s, 1H, H-3); 3.16 (s, 6H, 2CH3). 
13

C NMR 

(Bruker TOPSPIN, Acétone-d6, 100 MHz, p.p.m.) δ: 162.5 (C-4); 160.8 (C-2); 154.65 (C-

15); 153.2 (C-11); 150.4 (C-9); 133.68 (C-13 and C-17); 133.15 (C-7); 125.27 (C-5); 124.06 

(C-6); 119.8 (C-12); 118,01 (C-10); 117.59 (C-8); 111.99 (C-14 and C-16); 105.59 (C-3); 

40.09 (2CH3). DEPT 135°: 133.68 (C-13 et C-17); 133.15 (C-7); 125.27 (C-5); 124.06 (C-6); 

117.59 (C-8); 111.99 (C-14 and C-16); 105.59 (C-3); 40.09 (2CH3).  

 

Crystal structure Determination (C5) 

Chemical formula: C18H15NO4; Formula weight: 309.32; Crystal description: Parallelepiped, 

colourless; Melting point (K): 445 K; Crystal system: Triclinic; space group: P-1; 

Temperature (K): 298; Wavelength (Å): λ = 0.71073; Unit cell dimensions a = 7.4939 (2) Å b 

= 10.2361 (3) Å, c = 10.6620 (3) Å, α = 92.307 (3)°, β = 103.935 (1)°, γ = 109.852 (4)°; 

Volume (Å
3
): 739.92 (4); Z = 2; Radiation type: MoKα; Absorption coefficient (mm

-1
): 0.10; 

Density (Mg m
−3

): 1.433; F(000): 324; Crystal size (mm): 0.5 × 0.4 × 0.3; 8424 measured 

reflections; 3590 independent reflections; Rint = 0.024; R[F
2
 > 2σ(F

2
)] = 0.048; wR(F

2
) = 

0.120; S = 0.98; 3585 reflections; 209 parameters.  
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Figure 4: Molecular structure of compound C5 with the atom-numbering scheme. 

Displacement ellipsoids are drawn at the 50% probability level. 

 

Fluorescence spectra 

Fluorescence spectra of compounds C were recorded on KONTRON SFM 25 fluorimeter 

(L.P.A / U.C.A.D). Spectra acquisition were performed in 2D (Excitation-Emission Matrices) 

at room temperature. The solvent used was acetonitrile (Fluka, analytic quality), the only 

solvent in which all the compounds were soluble, at a concentration of 10
-4

 M for all the 

samples. The fluorescence spectra were performed using excitation into the maximum of the 

longest wavelength absorption band program. All the compounds were excited at their 

respective maximum excitation wavelength.  

 

RESULTS AND DISCUSSION 

Characterization 

The O-acylation derivatives (C1–C5) were synthesized by esterification of 4-

hydroxycoumarin with the corresponding benzoyl chloride in the presence of trimethylamine. 

Examination of the information obtained from the NMR spectra enabled us to assign the 

chemical shifts of the different protons and carbons for all compounds. ESI-MS confirmed 

the molecular mass of proposed structures. The molecular structures of compounds C2-C5 

were resolved by X-ray diffractometry and are shown in the different ORTEP structures 

obtained, with the atomic numbering scheme used. 

 

As it can be observed, all the molecules under study adopted some similar aspects in the 

conformation of the crystal. Coumarin nucleus and aromatic ring attached to the ester bridge 

in each molecule are planar, as expected. The main difference between the molecular 

structures of compounds C is the dihedral angle between coumarin ring system and the 

benzene ring: C2: 88.3(1)°; C3: 60.70(7)°; C4: 69.82(9)°; C5: : 43.43(6)°. 
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For all compounds, the C-O-C-C torsion angle and the dihedral angles between the coumarin 

cycle and the benzoate group also vary with steric hindrance. In the different structures, 

intramolecular bonds, valence bonds and stacking modes (C-H ... π; π ... π) have been 

observed, connecting the molecules in a three-dimensional supramolecular framework [30-

33]. The analysis of the crystallographic data provides further evidence on the results of the 

structural characterization of the compounds C2-C5. 

 

Fluorescence properties 

The different bands are characterized by the position of the maximum emission, analyzed 

through the wavelength (λem) and the fluorescence intensity (IF). Figures 5 to 9, described in 

table 2 report the results. 

 

Table 2: Excitation wavelengths (λex), emission wavelengths (λem) and fluorescence 

intensities (IF) 

Compound R λex (nm) λem (nm) IF 

C1 H 317 372 45 

C2 Me 291 378 95 

C3 t-Bu 320 386 140 

C4 MeO 305 392 225 

C5 (Me)2N 312 394 450 

 

All the synthesized compounds C, including substituting groups R with varying electron 

donating ability, exhibited fluorescence emission with wavelength ranging from 372 to 394 

nm. Nevertheless, we observed a clear relationship between the electron donating ability of 

the substituent R at the para position of carbonyl group and fluorescence emission: 

 The fluorescence intensity increased with the electron donating ability of the substituent R. 

So, it was pronouncedly high in the cases of C4 (R = CH3O) or C5 (R= Me2N) and weaker in 

the cases of C1, C2 and C3 with respectively R = H, CH3 and t-Bu.  

 Moreover, emission wavelength (λem) was as high as the electron donating ability of R was 

great. In this manner, it was the highest in the case of compound C5. These behaviors of 

compounds C in fluorescence emission, which are dependent on substituent R, are 

recapitulated in Scheme 3 below. 
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Scheme 3 
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Figure 5: Fluorescence emission of compound C1. 
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Figure 6: Fluorescence emission of compound C2. 

 

R:     H           CH3          t-Bu           MeO          (Me)2N 
 

Electron donating ability; λem; IF 
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Figure 7: Fluorescence emission of compound C3. 
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Figure 8: Fluorescence emission of compound C4. 
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Figure 9: Fluorescence emission of compound C5. 



www.wjpps.com                            Vol 8, Issue 1, 2019. 

 

 

128 

Djandé et al.                                 World Journal of Pharmacy and Pharmaceutical Sciences 

 

CONCLUSION 

A series of 4-substituted coumarin derivatives (compounds C1-C5) were successfully 

synthesized and the proposed structures were determined by spectral analysis performed by 

NMR and ESI-MS, and confirmed by X-ray diffractometry. 

 

Fluorescence properties of these (coumarin-4-yl)benzoates were investigated in acetonitrile. 

As a result, both bathochromic and hyperchromic effects were observed with the increasing 

of the electron donating character of the substituting group R. (Coumarin-4-yl)-4-

dimethylaminobenzoate (Compound C5) exhibited the most intense fluorescence. 
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